折板絮凝池的構造是在池內放置一定數(shù)量的平行折板或波紋板。主要運用折板的縮放或轉彎造成的邊界層分離而產生的附壁紊流耗能方式,在絮凝池內沿程保持橫向均勻,縱向分散地輸入微量而足夠的能量,有效地提高輸入能量利用率和混凝設備容積利用率,增加液流相對運動,以縮短絮凝時間,提高絮凝體沉降性能。
折板絮凝池的設計主要控制參數(shù)是水流速度、水頭損失和絮凝時間,但建成后往往發(fā)現(xiàn)實際運行參數(shù)與設計值相差甚遠。以水頭損失的計算為例,設計手冊中,其計算采用的是明渠漸擴和漸縮公式,有人通過研究發(fā)現(xiàn),豎流折板絮凝池水頭損失實測值與設計計算值相差較大,實測值明顯小于設計計算值。
開發(fā)新型、、安全的絮凝劑,深入研究絮凝基礎理論及其控制技術,現(xiàn)已成為一門迅速發(fā)展的科學與技術。絮凝過程是一個復雜的動態(tài)過程,盡管要地表達某一水質、絮凝劑和水流流態(tài)特性因素對絮凝效果的影響還存在很大的困難,但隨著多學科技術集成度的提高以及實際應用的需要,預計折板絮凝研究將在如下方面有所發(fā)展:
在往復式折板后面能夠形成渦旋,伴隨著顆粒粒徑在增加,渦旋的尺度由小變大,符合絮凝動力學規(guī)律;通過比較得出,圓弧形渠道絮凝池的湍流強度變化緩慢,分布更加均勻合理,不僅能夠滿足絮凝前期較大湍流強度的需要,也能滿足絮凝后期顆粒碰撞的湍流強度,證明圓弧轉彎渠道形比矩形轉彎渠道有更好的絮凝效果。
通過混凝動力學的研究,得到了混凝動力學中速度梯度與時間的關系G=G(0)/1+Kt;并通過擬合得到往復式絮凝池速度梯度的變化規(guī)律近似符合混凝動力學對速度梯度變化的要求;同時參考了往復式絮凝池的新研究成果—將往復式絮凝池轉彎處的矩形渠道變成圓弧形狀,設計出一種的往復式絮凝池。通過數(shù)學模擬發(fā)現(xiàn):優(yōu)化后的往復式絮凝池拐彎處的圓弧形渠道能夠消除傳統(tǒng)往復式絮凝池轉彎處的死水區(qū),而且圓弧形渠道處的水流速度比矩形渠道處的分布均勻,有利于節(jié)約能耗。
池的圓弧形轉彎渠道改變了矩形渠道轉彎處180°速度方向變化帶來的能耗,降低了能耗;同時圓弧形渠道處的水流方向是逐漸變化的,從而產生慣性離心力,進而產生大量微渦旋,提高了絮凝效率 。